INECO

Institutional and Economic Instruments for Sustainable Water Management in the Mediterranean Region

Economic and institutional instruments for enhancing sustainable water management in the context of the WFD implementation

Antonio Massarutto

University of Udine, Dept of Economic Sciences IEFE, Bocconi University, Milano antonio.massarutto@uniud.it

The "silent revolution" of groundwater

- According to Llamas (2005):
 - 50% of urban supply in the world relies on GW
 - GW is the cheapest and quickest way to reach MDG
 - cheap pumping + efficient irrigation techniques allow GW to compete successfully with big irrigation projects
 - in many LDC intensive use of GW has allowed significant improvements of agricultural yields and farmers' welfare
 - India: > 50M he irrigated by GW; 20M wells ⇔ despite 100% population growth, has become a net exporter
 - in arid countries with poor surface resources and irregular flows, represents the main usable resource
 - a "silent revolution" is taking place: from big waterworks + strong involvement of governments to individual/local selfsupplied systems

ROUGH (GROUND)WATER POLICY TRENDS IN ARID AND SEMI-ARID COUNTRIES

The importance of groundwater

- Available on demand 365 d/y, even in times of drought
- Distributed more evenly throughout the territory
- Does not require heavy capital investment affordable for small communities and individual users
- Cost = mostly marginal cost (pumping) ⇔ prerequisite for efficient use, since it is not worth for low-value crops
- Cost is declining thanks to innovative technologies (digging boreholes + pumping)

Issues concerning groundwater use

- Intensive use of groundwater may lead to:
 - lowering of water table, involving:
 - higher costs of pumping and need for deeper wells
 - saline intrusion
 - disruption of wetlands
 - soil subsidence
 - low flows in rivers
 - increased competition among uses
 - downstream uses penalized
 - appropriation by high-value uses
- Intensive use of groundwater ≠ overexploitation, if:
 - appropriate rules, adequately enforced, or
 - accepted rules for sharing water + burdens, mutual cooperation, social learning
 - improved management techniques

Examples of problems concerning groundwater

- Valuing
 - lowering costs of pumping have made intensive GW use affordable to many users
 - Resource cost = 0 until pumping < recharge; intensive use may lead to the appearance of RC
 - excess GW demand due to failure in taking RC into account
 - excess pressure on GW due to failure to account for GW depletion (eg pesticides, fertilizers)
- Governing
 - diffused sources of pollution / diffused abstractions
 - tragedy of commons: difficult to establish and enforce property rights on GW: from "no-one's property" to "common property"
- Sharing
 - misallocation of resources among sectors agreement about property rights and priorities
 - territorial dimension: GW perceived as a "local" good
 - GW use perceived as a customary right
 - emerging new demands entailing a (potentially higher) value but being perceived as "foreign" by the already established community
 - perception that water policymakers have "children and stepchildren"

Water quantity

The overexploitation dilemma – way out

- expand supply ⇔ doing more with more raw water
 - very costly, most of the times inefficient,
 - often not affordable if FCR (and not even for the state)
- increase productivity ⇔ doing more with the same raw water
 - not affordable for all uses; necessary to ensure that low-value uses do not carry on wasting resources
 - need for public subsidies at least in the initial phase
 - not necessarily economically efficient
- phase-out some uses ⇔ doing less with the same raw water
 - socially or politically difficult; enforcement problems if based on C&C
 - "irrigar los turistas vale mas que irrigar los campos"
 - compensation can alleviate political opposition

Traditional solutions

- New infrastructure for meeting demand
 - Redirect high-value uses to high-cost supply systems (eg dams, transfers, desalination)
 - Problems:
 - high financial cost
 - inefficient allocation of (economic) resources
 - unfeasible without strong government involvement (FCR not affordable)
- Command & control
 - define and enforce state ownership
 - licensing system + control & enforcement
 - Requires a strong public administration + political commitment
 - Problems:
 - enforcement difficult and costly (non-point sources)
 - very unpopular; fierce opposition of owners of traditional customary access rights
 - ... and we are not in China ...

An example of the inefficiency of traditional solutions

Case 2

Establishing public property rights (Spain, Italy)

- The problem and the background
 - rich aquifers (but competition with ecosystems' services)
 - intensive GW use by agriculture leading to excess exploitation of aquifers (saline intrusion, land subsidence, low flows, disappearence of wetlands)
 - existing water rights system based on land ownership (free possibility to drill at one's own expenses)
 - Some millions of boreholes ⇔ impossible to control
- The mainstream traditional solution (and its failure)
 - permission required for all new boreholes
 - existing boreholes receive a 50 years concession in exchange for the installation of meters and some control
 - Largely insufficient !! census of existing use rights still in course after 10-20 years; data is unreliable and uncontrolled

European policy for Groundwater

- WFD, GWD (and EUWI) concept about GW
 - GW is acknowledged as a key strategic resource
 - what is scarce is not "water", but rather "cheap and easily accessible water"
 - GW issues as typical non-point issues requiring a dedicated approach ⇔ collective action problem and not simply a management one
- WFD targets concerning GW:
 - preserve aquifers in a pristine state
 - avoid overexploitation and any form of irreversible contamination
 - stop and possibly invert trends of deterioration
- WFD strategy about GW
 - − Resource and environmental costs ⇔ basis for using economic instruments
 - Addressing drivers of GW demand better than end-of-pipe
 - Encourage awareness and mutual cooperation through PP
 - Search for integrated solutions
 - Reform of Rural Development Policy: MS are allowed to force the change of agricultural practices in designated water protection zones; compensations can be paid without violating the EU principle of equal treatment

How economic instruments can help

- Valuing
 - Taxation on abstractions
 - Full-cost recovery as a way to implement efficient water uses and phase out inefficient ones (eg irrigation of cereals)
 - "virtual water trade" as a way to avoid "raw water trade"
- Governing
 - Addressing drivers of demand
 - patterns of urban development
 - agriculture / cropping choices
 - "segregation + compensation" of low value uses
- Sharing
 - establish collective management systems individual access" to "public utility"

An example: managing the impact of water shortage in agriculture in Northern Italy

- Background
 - Existing irrigation systems allocate water among farmers on a per-he base, regardless what they actually do with water
 - Usually high-value and low-value crops coexist in the same area; reallocation of water is problematic
 - Water charges are low and far from FCR; tariffs are based on surface, no metering
- The problem
 - In the process of implementing the WFD, new requirements for minimum flows are being introduced and substantial reductions of abstraction rights is envisaged
 - In the existing system, this would entail a proportional reduction for all farmers (total cost = red + yellow area)
 - An eventual investment for increasing the productivity of raw water (eg transforming open-air ditches into pipelines) would have a cost that is much higher than the farmers' WTP (green area)
 - A reallocation of use rights from low- to high-value crops would minimize the total loss (yellow + blue area), but would concentrate it onto farmers producing low-value crops <> compensation required for equity reasons

How institutional innovation can help

- Valuing
 - social right vs. economic good a new principle for allocating water use rights and discourage valueless demand
 - direct bargaining as a way to favour agreements that are mutually convenient among sectors
- Governing
 - Public participation as a way to increase mutual awareness and understanding
 - Integrated management as a way to benefit from trading rights and encourage direct bargaining among users
- Sharing
 - Reuse of wastewater
 - Voluntary agreements
 - − Collective institutions ⇔ GW as a "common property"

Wasserpfennig (Germany)

- The problem and the background:
 - control contamination of GW due to agriculture
 - existing legislation is severe, but not enough to avoid the requirement for costly treatment
 - tight regulation required in DW catchment areas, but useless outside it; regulatory authority do not know where catchment areas are located
- The solution
 - PWS&S allowed to bargain with farmers and pay compensation for further reductions of pesticides and nitrated in catchment areas
 - cost of agreement entirely passed though on tariffs (much cheaper than removing pollutants afterwards)
- Drivers of success
 - "rule of reason" > "ideological principle" ⇔ PPP is not adopted
 - bargaining occurs among those actors that hold relevant knowledge; mediation of public authority useless
 - action is discretional and punctual ⇔ risk of abuse, requires trust
 - established tradition of subsidiarity

Collective water systems (Carpi, Italy)

- The problem and the background:
 - intensive GW pumping for meeting industrial requirements (textile industry)
 - evidence of soil subsidence and low flows in the main river
- The solution
 - creation of a collective water management system for industry supply
 - incentives for individual companies to join + penalties for exceeding pumping quotas
 - the system fosters intensive wastewater reuse and manages collective effluent treatment facility
- Drivers of success
 - understanding the nature of the problem as a collective problem
 - strong incentives to join the collective WMS system; initially with low charges
 - institutions involved as facilitators of cooperation (and not C&C)
 - fundamental role of regional institutions in the setting of specific knowledge and experimentation of technical solutions
 - tradition of cooperation among companies and with institutions
 - gradual policy: carrot until a majority of companies had joined, stick afterwards

Centralizing water supply systems (Italy)

- The problem and the background
 - more than 13,000 individual water supply systems
 - mostly supplied by GW and springs
 - low-tech, poor management capabilities
 - very vulnerable; increasing signs of contamination
 - not affordable for Las tp manage the system with innovative solutions required
- The solution
 - force the creation of collective entities representing LAs and holding responsibility for service supply (90 management units aimed at sharing resources, problems, solutions and costs)
 - interconnect supply system in order to concentrate abstraction, monitoring, treatment and protection ("reserve zones" to be identified in each management unit)
- Drivers of success / key issues
 - very slow implementation
 - difficult to achieve LA consensus and achieve a proper way of sharing problems ⇔ still no "community" has been created
 - importance of PP ⇔ key of success cases, crucial deficiency in cases of failure

Segregation of touristic demand (Sicily)

- The problem and the background
 - very poor performance of the water supply system; many areas still receive irregular supplies
 - water system in very bad conditions (eg leakage = 40-50%)
 - fast growing demand for tourism; tourism represents the main and more fastly growing economic sector; WTP estimates many times higher than baseline household demand
- The solution (eg. Palermo)
 - extraordinary effort for modernizing the system: investment for reducing leakage, wastewater reuse etc
 - separate water bills for first and second houses; special water bill for hotels and touristic resorts
 - concentrate price increase on touristic demand + hotels
- Drivers of success / key issues
 - very strong negative reaction of hotels and economic interests linked to tourism led to abandon the project (even if extra-cost < 1€/m3...)
 - once again, failure to perceive that traditional solutions (state-geared investment) are not practicable

Bottom-up solutions (Spain)

- In some Spanish coastal areas, bottom-up cooperative institutions have been established a long time ago and provide a case of sound and effective management of collective rights
- In some cases, user associations can be created and users be compelled to join
- Individual rights are assigned on a customary base and enforced through mutual control
- Open bargaining among users ("quasi-market")
- Associations ensure the definition of allocation rights and the settlement of disputes

A case-study: Low Llobregat & Cubeta S.Andreu

- Background
 - Location: Catalonia
 - Users: mainly industrial and PWS; some farmers
- Organization
 - compulsory affiliation for all users
 - controls all wells and abstractions
 - uses GW models that are shared and transparent to users
 - carry out restoration and artificial recharge programmes
 - represents all users in the political bargaining with the Autonomous Community of Catalonia (eg concerning low flows, programmes for limiting saline intrusion)
- Factors of success
 - few users with strong technical expertise and high-value demands
 - illegal overexploitation (no previously established use rights)
 - understanding of a common problem
 - aquifer allows alternative management strategies (eg artificial recharge)
 - good management can actually solve problems (no conflictual demands)

Conclusions – best practices on GW

- Solutions normally entail:
 - demand management (easier and more effective if drivers are addressed)
 - reserve traditional systems for baseline demand and address marginal peak demand to high-MC solutions
 - segregation of low-value uses (normally unfeasible without compensation, but may not be too costly)
 - establishement of management systems with adequate technological capabilities <> private sector involvement (?)
 - bottom-up regulatory institutions
 - investment in knowledge <> aquifer modeling, stakeholder analysis
 - social and political context matters (eg importance of the food security issue; cultural and traditional aspects of agriculture, landscape etc)
 - pay attention to "status" issues ⇔ building a community vs.
 "civil wars"

INECO Institutional and Economic Instruments for Sustainable Water Management in the Mediterranean Region

Thank you !!

Antonio Massarutto University of Udine, Dept of Economic Sciences IEFE, Bocconi University, Milano antonio.massarutto@uniud.it